Problem 1 Ages of Pulsars

Assume a pulsar is spinning with period P and period derivative \dot{P}. It has moment of inertia I and constant magnetic field B. You can relate B to the rest by:

$$B^2 = \frac{3\mu_0 c^3 I \dot{P}}{8\pi^3 R^6}$$

(look at C&O, eqn. 16.33).

a. Assume the neutron star is born with some initial period P_0 at $t = 0$. Write a differential equation for $dP(t)/dt$, and solve it to get $P(t)$:

$$P(t) = \sqrt{\frac{2}{3\mu_0 c^3 I} \frac{8\pi^3 R^6}{B^2 t + P_0^2}}$$

b. Solve this to then get the time since the pulsar was born.

c. Assume that the pulsar was born with a very short period, $P \gg P_0$. Show then that the time since the pulsar was born is approximately $\tau = P/2\dot{P}$.

Problem 2 Hulse-Taylor Pulsar

The binary neutron star PSR B1913+16 led the 1993 Nobel prize in physics. This is because careful measurement of its orbit showed that the orbit was gradually shrinking: a result of Einstein’s theory of General Relativity.
The angular momentum for a binary in a circular orbit is \(L = \mu \sqrt{GMa} \), where \(\mu \) is the reduced mass and \(M \) is the total mass. The masses stay the same, but \(a \) will change. You can assume that both masses are the same \(M_0 = 1.4 M_{\odot} \).

General Relativity predicts that the orbit will lose angular momentum due to gravitational waves at a rate:

\[
\frac{dL}{dt} = -\frac{32}{5} \frac{G^{7/2} \mu^2 M^{5/2}}{c^5 a^{7/2}}
\]

a. Take the time derivative of the total angular momentum, \(L(t) = \mu \sqrt{GMa(t)} \).
Show that for both masses being \(M_0 \) and only \(a \) changing you get:

\[
\frac{dL}{dt} = \sqrt{\frac{GM_0^3}{2}} \frac{1}{2\sqrt{a(t)}} \frac{da}{dt}
\]

b. Set this equal to the \(dL/dt \) from gravitational waves. This will give you a differential equation for \(a(t) \). Assume at \(t = 0 \) the binary is at \(a(0) = a_0 \). Solve that to get:

\[
a(t) = \left(\frac{-512 t G^3 M_0^3 + 5 a_0^4 c^5}{5^{1/4} c^{5/4}} \right)^{1/4}
\]

Given this, how long (in years) will it take a pulsar binary to merge (i.e., come to \(a = 0 \))? What is the maximum \(a \) such that they will merge within a Hubble time (the age of the universe, roughly 13 billion years)? What binary period does that correspond to?

These are among the sorts of events that people at UWM hope to detect directly with the Laser Interferometer Gravitational Observatory.

c. Use the result of the previous part and Kepler’s laws to determine \(dP_b/dt \), the rate of change of the binary period \(P_b \). Show that it is:

\[
\frac{dP_b}{dt} = -\frac{192 \pi}{5} \frac{G^{5/3} M_0^{5/3}}{2^{1/3} c^5} \left(\frac{2\pi}{P_b} \right)^{5/3}
\]

If the current binary period is 8 hr, what is the value of \(dP_b/dt \)? Compare this with the value in Table 18.1 in the book.