CGCA Logo

Leonard E Parker

Center for Gravitation, Cosmology & Astrophysics

UWM Logo
Leonard E Parker Center for Gravitation, Cosmology and Astrophysics

Follow us on:

Projects:

LIGO Nanograv E@H ARCC RNS

Make a Gift

Thank you for considering a gift to the Leonard E Parker Center for Gravitation, Cosmology and Astrophysics. Your gift of any size makes a difference. Make a Gift Online.

Get Involved

There are many ways to participate in the life of the Leonard E Parker Center for Gravitation, Cosmology and Astrophysics. Please get involved, learn more about our fascinating Universe, and meet our members. Get involved!

Acknowledgement

The Leonard E Parker Center for Gravitation, Cosmology and Astrophysics is supported by NASA, the National Science Foundation, UW-Milwaukee College of Letters and Science, and UW-Milwaukee Graduate School. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of these organizations.

Past Articles

2009

1. V. Predoi et al..
Prospects for joint radio telescope and gravitational wave searches for astrophysical transients.
arXiv: arXiv:0912.0476.

2. P. Patel, X. Siemens, R. Dupuis, J. Betzwieser.
Implementation of barycentric resampling for continuous wave searches in gravitational wave data.
arXiv: arXiv:0912.4255.

3. Koji Uryu, (Ryukyus U.) , Francois Limousin, (Paris Observ. & Diderot U., Paris) , John L. Friedman, (Wisconsin U., Milwaukee) , Eric Gourgoulhon, (Paris Observ. & Diderot U., Paris) , Masaru Shibata, (Kyoto U., Yukawa Inst., Kyoto).
Non-conformally flat initial data for binary compact objects.
Phys.Rev.D80:124004,2009. arXiv: 0908.0579 [gr-qc].

4. Luis A. Anchordoqui, Teresa Montaruli.
In search for Extraterrestrial High Energy neutrinos.
arXiv: 0912.1035 [hep-ph.HE].

5. Luis A. Anchordoqui, Haim Goldberg, Dan Hooper, Danny Marfatia, Tomasz R. Taylor.
Neutralino dark matter annihilation to monoenergetic gamma rays as a signal of low mass superstrings.
arXiv: 0912.0517 [hep-ph].

6. G. Hobbs et al..
The international pulsar timing array project: using pulsars as a gravitational wave detector.
arXiv: 0911.5206 [astro-ph.SR].

7. Ivan Agullo, Jose Navarro-Salas, Gonzalo J. Olmo, Leonard Parker.
Revising the observable consequences of slow-roll inflation.
arXiv: 0911.0961 [hp-th].

8. E. Goetz, R. L. Savage Jr., J. Garofoli, G. Gonzalez, E. Hirose, P. Kalmus, K. Kawabe, J. Kissel, M. Landry, B. O'Reilly, X. Siemens, A. Stuver, M. Sung.
Accurate calibration of test mass displacement in the LIGO interferometers.
arXiv: 0911.0853v1 [gr-qc].

9. F. Jenet et al..
The North American Nanohertz Observatory for Gravitational Waves.
arXiv: 0909.1058.

10. Ivan Agullo, Jose Navarro-Salas, Gonzalo J. Olmo, Leonard Parker.
Inflation, quantum fields, and CMB anisotropies.
arXiv: 0909.0026.

11. The LIGO Scientific Collaboration & The Virgo Collaboration.
Searches for gravitational waves from known pulsars with S5 LIGO data.
arXiv: 0909.3583.

12. The LIGO Scientific Collaboration & The Virgo Collaboration.
An upper limit on the stochastic gravitational-wave background of cosmological origin.
Nature 460, 990-994 (20 August 2009).

13. By Virgo Collaboration (LIGO Scientific Collaboration et al.).
Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO Science Run 5 and Virgo Science Run 1.
arXiv: 0909.3583.

14. Ian Harry, Bruce Allen, B.S. Sathyaprakash.
A stochastic template placement algorithm for gravitational wave data analysis.
arXiv: 0908.2090v1 [gr-qc].

15. Koji Uryu, Francois Limousin, John L. Friedman, Eric Gourgoulhon, Masaru Shibata .
Non-conformally flat initial data for binary compact objects.
arXiv: 0908.0579v2 [gr-qc].

16. B Abbott et al.
Observation of a kilogram-scale oscillator near its quantum ground state.
New J. Phys. 11 073032 (13pp) doi: 10.1088/1367-2630/11/7/073032.

17. Pierre Auger Collaboration (J. Abraham et al.).
The Fluorescence Detector of the Pierre Auger Observatory.
Submitted to Nucl.Instrum.Meth.A. arXiv: 0907.4282.

18. Gonzalo J. Olmo, Helios Sanchis-Alepuz, Swapnil Tripathi.
Dynamical Aspects of Generalized Palatini Theories of Gravity.
arXiv: 0907.2787.

19. Luis A. Anchordoqui, Haim Goldberg, Russell D. Moore, Sergio Palomares-Ruiz, Diego F. Torres, Thomas J. Weiler.
Present and Future Gamma-Ray Probes of the Cygnus OB2 Environment.
Phys.Rev.D80:103004,2009. arXiv: 0907.0395v1 [astro-ph.HE].

20. Ivan Agullo, J. Fernando Barbero G., Enrique F. Borja, Jacobo Diaz-Polo, Eduardo J. S. Villaseñor.
The combinatorics of the SU(2) black hole entropy in loop quantum gravity.
arXiv: 0906.4529.

21. Pierre Auger Collaboration: J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Alvarez-Muñiz, M. Ambrosio, L. Anchordoqui et al.
The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory.
arXiv: 0906.2189.

22. Pierre Auger Collaboration: J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Alvarez-Muñiz, M. Ambrosio, L. Anchordoqui et al.
Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory.
arXiv: 0906.2347.

23. Pierre Auger Collaboration: J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Alvarez-Muñiz, M. Ambrosio, L. Anchordoqui et al.
Operations of and Future Plans for the Pierre Auger Observatory.
arXiv: 0906.2354.

24. Pierre Auger Collaboration: J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Alvarez-Muñiz, M. Ambrosio, L. Anchordoqui et al.
Calibration and Monitoring of the Pierre Auger Observatory.
arXiv: 0906.2358.

25. Pierre Auger Collaboration: J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Alvarez-Muñiz, M. Ambrosio, L. Anchordoqui et al.
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory.
Astropart. Phys. 32, 89 (2009). arXiv: 0906.5497.

26. Ivan Agullo, Jose Navarro-Salas, Gonzalo J. Olmo, Leonard Parker.
Insensitivity of Hawking radiation to an invariant Planck-scale cutoff.
arXiv: 0906.5315.

27. Luis Anchordoqui, Francis Halzen.
Lessons in Particle Physics.
arXiv: 0906.1271.

28. Pierre Auger Collaboration: J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Alvarez-Muñiz, M. Ambrosio, L. Anchordoqui et al.
Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory.
arXiv: 0906.2319.

29. Koutarou Kyutoku, Masaru Shibata, Keisuke Taniguchi.
Quasiequilibrium states of black hole-neutron star binaries in the moving-puncture framework.
arXiv: 0906.0889.

30. Matthew M. Glenz, Leonard Parker.
Study of the Spectrum of Inflaton Perturbations.
arXiv: 0905.2624.

31. Holger J. Pletsch, Bruce Allen.
Exploiting global correlations to detect continuous gravitational waves.
arXiv: 0906.0023.

32. C. Pankow, S. Klimenko, G. Mitselmakher, I. Yakushin, G. Vedovato, M. Drago, R. A. Mercer, P. Ajith.
A burst search for gravitational waves from binary black holes.
arXiv: 0905.3120v1.

33. LIGO Scientific Collaboration: B. Abbott, et al.
A burst search for gravitational waves from perturbed black holes in LIGO S4 data.
Phys.Rev.D80:062001. arXiv: 0905.1654.

34. LIGO Scientific Collaboration.
Einstein@Home search for periodic gravitational waves in early S5 LIGO data.
Phys.Rev.D80:042003,2009. . arXiv: 0905.1705.

35. LIGO Scientific Collaboration.
Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's fifth Science Run.
Phys.Rev.D80:047101,2009. arXiv: 0905.3710.

36. Ligo Scientific Collaboration: B. Abbot, et al.
First LIGO search for gravitational wave bursts from cosmic (super)strings.
Phys.Rev.D80:062002,2009. arXiv: 0904.4718.

37. Ligo Scientific Collaboration.
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm.
Astrophys.J.701:L68-L74,2009. arXiv: 0905.0005.

38. Luis A. Anchordoqui, Haim Goldberg, Dieter Lust, Satoshi Nawata, Stephan Stieberger, Tomasz R. Taylor.
LHC Phenomenology for String Hunters.
arXiv: 0904.3547v1 .

39. Ligo Scientific Collaboration: B. Abbot, et al.
Search for High Frequency Gravitational Wave Bursts in the First Calendar Year of LIGO's Fifth Science Run.
arXiv: 0904.4910.

40. Pierre Auger Collaboration.
Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory.
arXiv: 0903.1127.

41. Pierre Auger Collaboration.
Limit on the diffuse flux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory.
arXiv: 0903.3385.

42. Louis Leblond, Benjamin Shlaer, Xavier Siemens .
Gravitational Waves from Broken Cosmic Strings: The Bursts and the Beads.
Phys.Rev.D79:123519,2009 . arXiv: 0903.4686 [astro-ph.CO].

43. Richard H. Price, Charalampos Markakis, John L. Friedman .
Iteration Stability for Simple Newtonian Stellar Systems.
arXiv: 0903.3074 .

44. Yoichi Aso et al. .
Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors.
Class.Quant.Grav.26:055010,2009. .

45. Masaru Shibata (Kyoto U.) , Koutarou Kyutoku (Tokyo U.) , Tetsuro Yamamoto (Unlisted) , Keisuke Taniguchi (Wisconsin U., Milwaukee).
Gravitational waves from black hole-neutron star binaries I: Classification of waveforms.
Phys.Rev.D79:044030,2009. arXiv: 0902.0416.

46. Markus Ahlers, Luis A. Anchordoqui, Subir Sarkar.
Neutrino diagnostics of ultra-high energy cosmic ray protons.
Phys. Rev. D 79 (2009) 083009. arXiv: 0902.3993.

47. Jocelyn S. Read (Potsdam, Max Planck Inst.) , Charalampos Markakis (Wisconsin U., Milwaukee) , Masaru Shibata (Tokyo U., CNS) , Koji Uryu (Ryukyus U.) , Jolien D.E. Creighton, John L. Friedman (Wisconsin U., Milwaukee).
Measuring the neutron star equation of state with gravitational wave observations.
arXiv: 0901.3258.

48. Mark G. Jackson, Xavier Siemens .
Gravitational Wave Bursts from Cosmic Superstring Reconnections.
JHEP 0906:089,2009. arXiv: 0901.0867 [hep-th] .

49. Xing Huan, Leonard Parker.
Hermiticity of the Dirac Hamiltonian in Curved Spacetime.
Phys.Rev.D79:024020,2009. arXiv: 0811.2296.

50. LIGO Scientific Collaboration (B. Abbott et al.).
Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of LIGO's S5 Data.
Phys.Rev.D79:122001,2009. arXiv: 0901.0302.

51. Benjamin Aylott, John G. Baker, William D. Boggs, Michael Boyle, Patrick R. Brady et al. .
Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project.
2009 Class. Quantum Grav. 26 114008. arXiv: 0901.4399v2.

2008

1. Masaki Ando, et al.
DECIGO pathfinder
J.Phys.Conf.Ser.120:032005,2008.

2. LIGO Scientific Collaboration (B. Abbott et al.)
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
arXiv: 0810.0283.

3. Seiji Kawamura, et al.
The Japanese space gravitational wave antenna - DECIGO
J.Phys.Conf.Ser.122:012006,2008.

4. Melissa Anholm, Stefan Ballmer, Jolien D.E. Creighton, Larry R. Price, Xavier Siemens
Optimal strategies for gravitational wave stochastic background searches in pulsar timing data
arXiv: gr-qc/0809.0701.

5. LIGO Scientific Collaboration (B. Abbott et al.)
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
Phys. Rev. Lett. 101, 211102,2008. arXiv: astro-ph/0808.2050.

6. Luis A. Anchordoqui, Haim Goldberg, Dieter Lust, Satoshi Nawata, Stephan Stieberger, Tomasz R. Taylor
Dijet signals for low mass strings at the LHC
Phys.Rev.Lett.101:241803,2008. arXiv: hep-ph/0808.0497.

7. LIGO Scientific Collaboration (B. Abbott et al.)
Implications for the Origin of GRB 070201 from LIGO Observations
ApJ.681:1419-1430,2008. arXiv: 0711.1163v2.

8. Luis A. Anchordoqui
String Physics at the LHC
arXiv: hep-ph/0806.3782.

9. Luis A. Anchordoqui, Haim Goldberg, Tomasz R. Taylor
Decay widths of lowest massive Regge excitations of open strings
Phys.Lett.B668:373-377,2008. arXiv: hep-ph/0806.3420.

10. Ivan Agullo, Jose Navarro-Salas, Gonzalo J. Olmo, Leonard Parker
Reexamination of the Power Spectrum in De Sitter Inflation
Phys.Rev.Lett.101:171301,2008. arXiv: gr-qc/0806.0034.

11. Luis A. Anchordoqui, Antonio Delgado, Carlos A.Garcia Canal, Sergio J. Sciutto
Reply to Comment on Hunting long-lived gluinos at the Pierre Auger Observatory
Phys.Rev.D77:128302,2008.

12. Pierre Auger Collaboration (J. Abraham et al.)
Observation of the suppression of the flux of cosmic rays above 4x10^19eV
Phys.Rev.Lett.101:061101,2008. arXiv: astro-ph/0806.4302.

13. Larry R. Price, Xavier Siemens
Stochastic Backgrounds of Gravitational Waves from Cosmological Sources: Techniques and Applications to Preheating
Phys.Rev.D78:063541,2008. arXiv: astro-ph/0805.3570.

14. Luis A. Anchordoqui, Haim Goldberg, Satoshi Nawata, Tomasz R. Taylor
Direct photons as probes of low mass strings at the LHC
Phys.Rev.D78:016005,2008. arXiv: hep-ph/0804.2013.

15. LIGO Scientific Collaboration (B. Abbott et al.)
The Einstein@Home search for periodic gravitational waves in LIGO S4 data
Phys.Rev.D80:042003,2009. arXiv: gr-qc/0804.1747.

16. Ivan Agullo, Jose Navarro-Salas, Gonzalo J. Olmo, Leonard Parker
Two-point functions with an invariant Planck scale and thermal effects
Phys.Rev.D77:124032,2008. arXiv: hep-th/0804.0513.

17. Ivan Agullo, Jose Navarro-Salas, Gonzalo J. Olmo, Leonard Parker
The role of the Planck scale in black hole radiance
Int.J.Mod.Phys.D17:489-494,2008.

18. LIGO Scientific Collaboration (B. Abbott et al.)
Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs
Phys.Rev.D77:062004,2008.

19. LIGO Scientific Collaboration and Virgo Collaboration (B. Abbott et al.)
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
Class.Quant.Grav.25:114051,2008. arXiv: gr-qc/0802.4320.

20. Ivan Agullo, Jose Navarro-Salas, Gonzalo J. Olmo, Leonard Parker
Acceleration radiation and the Planck scale
Phys.Rev.D77:104034,2008. arXiv: hep-th/0802.3920.

21. LIGO Collaboration (K. Wette et al.)
Searching for gravitational waves from Cassiopeia A with LIGO
Class.Quant.Grav.25:235011,2008. arXiv: gr-qc/0802.3332.

22. Luis A. Anchordoqui, Dan Hooper, Subir Sarkar, Andrew M. Taylor
High energy neutrinos from astrophysical accelerators of cosmic ray nuclei
Astropart.Phys.29:1-13,2008.

23. Pierre Auger Collaboration
Observation of the suppression of the flux of cosmic rays above 4x10^19eV
arXiv: gr-qc/0806.4302.

24. John L. Friedman, Atsushi Higuchi
Topological censorship and chronology protection
Annalen Phys.15:109-128,2006. arXiv: gr-qc/0801.0735.

25. Nickolas V. Fotopoulos for the LIGO Scientific Collaboration
Searching for stochastic gravitational-wave background with the co-located LIGO interferometers
J.Phys.Conf.Ser.122:012032,2008. arXiv: gr-qc/0801.3429.

2007

1. The Pierre Auger Collaboration
Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei
Astropart. Phys. Vol. 29, Pages 188-204 (April 2008). arXiv: 0712.2843.

2. Gonzalo J. Olmo
Limit to General Relativity in f(R) theories of gravity
Phys.Rev.D 75, 023511 (2007).

3. Gonzalo J. Olmo
Violation of the equivalence principle in modified theories of gravity
Phys. Rev. Lett. 98, 061101 (2007).

4. Warren G. Anderson, Jolien D.E. Creighton
Searches for Gravitational Waves from Binary Neutron Stars: A Review
arXiv: gr-qc/0712.2523.

5. LIGO Scientific Collaboration (B. Abbott et al.)
Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals
arXiv: gr-qc/0712.2050.

6. Pierre Auger Collaboration (J. Abraham et al.)
Upper limit on the cosmic-ray photon flux above 10**19-eV using the surface detector of the Pierre Auger Observatory
arXiv: astro-ph/0712.1147.

7. Pierre Auger Collaboration
Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory
Phys. Rev. Lett. 100, 211101 (2008). arXiv: astro-ph/0712.1909.

8. Luis A. Anchordoqui, Haim Goldberg, Satoshi Nawata, Tomasz R. Taylor
Jet signals for low mass strings at the LHC
arXiv: hep-ph/0712.0386.

9. Pierre Auger Collaboration
Correlation of the highest energy cosmic rays with nearby extragalactic objects
Science 9 November 2007: Vol. 318. no. 5852, pp. 938 - 943. arXiv: 0711.2256.

10. L. Anchordoqui, V. Barger, H. Goldberg, D. Marfatia
Phase transition in the fine structure constant
Phys.Lett.B660:529-533,2008. arXiv: hep-ph/0711.4055.

11. Luis A. Anchordoqui, Antonio Delgado, Carlos A. Garcia Canal, Sergio J. Sciutto
Hunting long-lived gluinos at the Pierre Auger Observatory
Phys.Rev.D77:023009,2008. arXiv: hep-ph/0710.0525.

12. Rahul Biswas, Patrick R. Brady, Jolien D.E. Creighton, Stephen Fairhurst
The Loudest event statistic: General formulation, properties and applications
arXiv: gr-qc/0710.0465.

13. Luis A. Anchordoqui, Haim Goldberg, Dan Hooper, Subir Sarkar, Andrew M. Taylor
Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory
Phys.Rev.D76:123008,2007. arXiv: astro-ph/0709.0734.

14. Luis Anchordoqui, Haim Goldberg
Constraints on unparticle physics from solar and KamLAND neutrinos
Phys.Lett.B659:345-348,2008. arXiv: hep-ph/0709.0678.

15. LIGO Scientific Collaboration (B. Abbott et al.)
All-sky search for periodic gravitational waves in LIGO S4 data
Phys.Rev.D77:022001,2008. arXiv: gr-qc/0708.3818.

16. Ivan Booth, Stephen Fairhurst
Extremality conditions for isolated and dynamical horizons
arXiv: gr-qc/0708.2209.

17. Paul R. Anderson, Emil Mottola, Ruslan Vaulin
Stress Tensor from the Trace Anomaly in Reissner-Nordstrom Spacetimes
Phys.Rev.D76:124028,2007. arXiv: gr-qc/0707.3751.

18. Stephen Fairhurst, Patrick Brady
Interpreting the results of searches for gravitational waves from coalescing binaries
arXiv: gr-qc/0707.2410.

19. Luis A. Anchordoqui, John F. Beacom, Yousaf M. Butt, Haim Goldberg, Sergio Palomares-Ruiz, Thomas J. Weiler, Justin Wesolowski
TeV gamma-rays from photo-disintegration/de-excitation of nuclei in Westerlund 2
Proceedings of 30th International Cosmic Ray Conference (ICRC 2007), Merida, Yucatan, Mexico, 3-11 Jul 2007. arXiv: astro-ph/0706.0517.

20. Luis A. Anchordoqui
Lectures on astronomy, astrophysics, and cosmology
arXiv: physics.ed-ph/0706.1988.

21. Luis Anchordoqui, for the Pierre Auger Collaboration
Search for Coincidences in Time and Arrival Direction of Auger Data with Astrophysical Transients
arXiv: 0706.0989.

22. L. Mersini-Houghton, L. Parker
Eternal inflation is expensive
arXiv: hep-th/0705.0267.

23. Matthew M. Glenz, Koji Uryu
Circular solution of two unequal mass particles in post-Minkowski approximation
Phys.Rev.D76:027501,2007. arXiv: gr-qc/0704.3769.

24. LIGO Scientific Collaboration (B. Abbott et al.)
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
arXiv: gr-qc/0704.3368.

25. LIGO Scientific Collaboration (B. Abbott et al.)
Search for gravitational-wave bursts in LIGO data from the fourth science run
Class.Quant.Grav.24:5343-5370,2007, Erratum-ibid.25:039801,2008. arXiv: gr-qc/0704.0943.

26. Luis Anchordoqui, Haim Goldberg, Satoshi Nawata, Carlos Nunez
Cosmology from String Theory
Phys.Rev.D76:126005,2007. arXiv: hep-ph/0704.0928.

27. D.H.J. Cho, A.A. Tsokaros, A.G. Wiseman
The self-force on a non-minimally coupled static scalar charge outside a Schwarzschild black hole
Class.Quant.Grav.24:1035-1048,2007.

28. Luis A. Anchordoqui, Dan Hooper, Subir Sarkar, Andrew M. Taylor
High-energy neutrinos from astrophysical accelerators of cosmic ray nuclei
Astropart.Phys.29:1-13,2008. arXiv: astro-ph/0703001.

29. LIGO Scientific Collaboration (B. Abbott et al.)
Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO
Phys.Rev.D76:062003,2007. arXiv: astro-ph/0703419.

30. ALLEGRO Collaboration and LIGO Scientific Collaboration (B. Abbott et al.)
First Cross-Correlation Analysis of Interferometric and Resonant-Bar Gravitational-Wave Data for Stochastic Backgrounds
Phys.Rev.D76:022001,2007. arXiv: gr-qc/0703068.

31. LIGO Scientific Collaboration (B. Abbott et al.)
Upper limit map of a background of gravitational waves
Phys.Rev.D76:082003,2007. arXiv: astro-ph/0703234.

32. Antonios A. Tsokaros, Koji Uryu
Numerical method for binary black hole/neutron star initial data: Code test
Phys.Rev.D75:044026,2007. arXiv: gr-qc/0703030.

33. LIGO Scientific Collaboration (B. Abbott et al.)
Upper limits on gravitational wave emission from 78 radio pulsars
Phys.Rev.D76:042001,2007. arXiv: gr-qc/0702039.

34. Leonard Parker
Amplitude of Perturbations from Inflation
arXiv: hep-th/0702216.

35. E. Messaritaki
Singular field used to calculate the self-force on nonspinning and spinning particles
Phys. Rev. D 75, 104011 (2007). arXiv: gr-qc/0702124.

36. LIGO / Virgo working group (F. Beauville et al.)
Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search
arXiv: gr-qc/0701027.

37. LIGO-Virgo working group (F. Beauville et al.)
A Comparison of methods for gravitational wave burst searches from LIGO and Virgo
arXiv: gr-qc/0701026.

2006

1. S.Yoshida
Non-axisymmetric oscillations of a torus around a Schwarzschild black hole: A toy problem
Class.Quant.Grav.23:6899-6917,2006.

2. T.S.Keidl, J.L.Friedman, A.G.Wiseman
On Finding fields and self-force in a gauge appropriate to separable wave equations
Phys.Rev.D75:124009,2007. arXiv: gr-qc/0611072.

3. L.A.Anchordoqui, M.M.Glenz, L.Parker
Black Holes at IceCube
arXiv: hep-ph/0610359.

4. X.Siemens, V.Mandic, J.D.E.Creighton
Gravitational wave stochastic background from cosmic (super)strings
Phys.Rev.Lett.98:111101,2007. arXiv: astro-ph/0610920.

5. I.Booth, S.Fairhurst
Isolated, slowly evolving, and dynamical trapping horizons: Geometry and mechanics from surface deformations
arXiv: gr-qc/0610032.

6. LIGO Collaboration (B.Abbott, et al.)
Searching for a Stochastic Background of Gravitational Waves with LIGO
Astrophys.J.659:918-930,2007. arXiv: astro-ph/0608606.

7. Pierre Auger Collaboration (J. Abraham et al.)
Anisotropy studies around the Galactic Centre at EeV energies with the Auger Observatory
Astropart.Phys.27:244-253,2007. arXiv: astro-ph/0607382. FERMILAB-PUB-06-241-A-TD

8. Pierre Auger Collaboration (J.Abraham et al.)
An upper limit to the photon fraction in cosmic rays above 10**19-eV from the Pierre Auger Observatory
Astropart.Phys.27:155-168,2007. arXiv: astro-ph/0606619. FERMILAB-PUB-06-210-A

9. T.Fukumoto, T.Futamase, Y.Itoh
On the equation of motion for a fast moving small object using the strong field point particle limit
Prog.Theor.Phys.116:423-428,2006. arXiv: gr-qc/0606114.

10. S.Kawamura, et al.
The Japanese space gravitational wave antenna DECIGO
Class.Quant.Grav.23:S125-S132,2006.

11. S.Yoshida, B.C.Bromley, J.S.Read, K.Uryu, J.L.Friedman
Models of helically symmetric binary systems
Class.Quant.Grav.23:S599-S614,2006. arXiv: gr-qc/0605035.

12. LIGO Collaboration (B.Abbott, et al.)
Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run
Phys.Rev.D76:082001,2007. arXiv: gr-qc/0605028. P050008-03.

13. Saikat Ray-Majumder
Searching for gravitational-wave bursts from stellar-mass binary black holes
PhD Dissertation, University of Wisconsin-Milwaukee.

14. X.Siemens, J.D.E.Creighton, I.Maor, S.Ray-Majumder, K.Cannon, J.S.Read
Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints
Phys.Rev.D73:105001,2006. arXiv: gr-qc/0603115.

2005

1. J.L.Friedman, A.Higuchi
Topological censorship and chronology protection
Annalen Phys.15:109-128,2005.

2. A.Fabbri, S.Farese, J.Navarro-Salas, G.J.Olmo, H.Sanchis-Alepuz
Quantum corrections to the Schwarzschild spacetime: backreaction in the Boulware vacuum
arXiv: hep-th/0512167.

3. A.Fabbri, S.Farese, J.Navarro-Salas, G.J.Olmo, H.Sanchis-Alepuz
Static quantum corrections to the Schwarzschild spacetime
arXiv: hep-th/0512179.

4. LIGO Collaboration and TAMA Collaboration (B.Abbott, et al.)
Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries
arXiv: gr-qc/0512078. P050017-01-Z.

5. LIGO Collaboration (B.Abbott, et al.)
Search for gravitational-wave bursts in LIGO's third science run
Class.Quant.Grav.23:S29-S39,2006. arXiv: gr-qc/0511146.

6. K.Uryu, F.Limousin, J.L.Friedman, E.Gourgoulhon, M.Shibata
Binary neutron stars in a waveless approximation
arXiv: gr-qc/0511136.

7. G.J.Olmo
Post-Newtonian constraints on F(R) cosmologies in metric and Palatini formalism
Phys.Rev.D72:083505,2005.

8. C.Torres, W.G.Anderson
Progress on a detection algorithm for longer lived gravitational wave bursts
Class.Quant.Grav.22:S1169-S1178,2005.

9. J.L.Friedman, K.Uryu
Post-Minkowski action for point-particles and a helically symmetric binary solution
arXiv: gr-qc/0510002.

10. LIGO Collaboration (B.Abbott, et al.)
Search for gravitational waves from binary black hole inspirals in LIGO data
Phys.Rev.D73:062001,2006. arXiv: gr-qc/0509129.

11. B.Allen, W.G.Anderson, P.R.Brady, D.A.Brown, J.D.E.Creighton
Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries
arXiv: gr-qc/0509116.

12. F.Beauville, et al.
Benefits of joint LIGO: VIRGO coincidence searches for burst and inspiral signals
arXiv: gr-qc/0509041.

13. LIGO Collaboration (B.Abbott, et al.)
First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform
Phys.Rev.D72:102004,2005. arXiv: gr-qc/0508065. P050013-03-R.

14. R.R.Caldwell, W.Komp, L.E.Parker, D.A.T.Vanzella
A sudden gravitational transition
Phys.Rev.D73:023513,2006. arXiv: astro-ph/0507622.

15. TAMA Collaboration (B.Abbott, et al.)
Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts
Phys.Rev.D72:122004,2005. arXiv: gr-qc/0507081. P040050-05-Z.

16. LIGO Collaboration (B.Abbott, et al.)
Upper limits on a stochastic background of gravitational waves
Phys.Rev.Lett.95:221101,2005. arXiv: astro-ph/0507254. P050003-E-R.

17. S. Kawamura et al.
The Japanese space gravitational wave antenna DECIGO
Class.Quant.Grav.23:S125-S132,2006.

18. W.G.Anderson, A.G.Wiseman
A matched expansion approach to practical self-force calculations
Class.Quant.Grav.22:S783-S800,2005. arXiv: gr-qc/0506136.

19. G.J.Olmo
Post-Newtonian constraints on F(R) cosmologies in Palatini formalism
arXiv: gr-qc/0505136.

20. G.J.Olmo
Post-Newtonian constraints on F(R) cosmologies in metric formalism
arXiv: gr-qc/0505135.

21. D.A.Brown for LIGO Collaboration
Using the inspiral program to search for gravitational waves from low-mass binary inspiral
Class.Quant.Grav.22:S1097-S1108,2005. arXiv: gr-qc/0505102.

22. G.J.Olmo
The gravity Lagrangian according to solar system experiments
Phys.Rev.Lett.95:261102,2005. arXiv: gr-qc/0505101.

23. LIGO Collaboration (B.Abbott, et al.)
Upper limits on gravitational wave bursts in LIGO's second science run
Phys.Rev.D72:062001,2005. arXiv: gr-qc/0505029. P040040-07-R.

24. LIGO Collaboration (B.Abbott, et al.)
Search for gravitational waves from galactic and extra-galactic binary neutron stars
arXiv: gr-qc/0505041. 040024-04-Z.

25. LIGO Collaboration (B.Abbott, et al.)
Search for gravitational waves from primordial black hole binary coalescences in the galactic halo
arXiv: gr-qc/0505042. P040045-04-Z.

26. M.Saijo, S.Yoshida
Low T/|W| dynamical instability in differentially rotating stars: Diagnosis with canonical angular momentum
arXiv: astro-ph/0505543.

27. I.Booth, S.Fairhurst
Horizon energy and angular momentum from a Hamiltonian perspective
arXiv: gr-qc/0505049.

28. M.Saijo, S.Yoshida
Dynamical one-armed spiral instability in differentially rotating stars
eConf C041213:1419,2004. arXiv: astro-ph/0504002.

29. Joint LIGO / Virgo working group (L. Blackburn et al.)
A first comparison between LIGO and Virgo inspiral search pipelines
arXiv: gr-qc/0504050.

30. L.Blackburn, et al.
A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data
arXiv: gr-qc/0504060.

31. LIGO Collaboration (E.Messaritaki for the collaboration)
Report on the first binary black hole inspiral search in LIGO data
arXiv: gr-qc/0504065.

32. TAMA Collaboration, LIGO Collaboration (S.Fairhurst et al.)
Status of the joint LIGO-TAMA300 inspiral analysis
OU-TAP-257. arXiv: gr-qc/0504128.

33. S.E.Gralla, J.L.Friedman, A.G.Wiseman
Numerical radiation reaction for a scalar charge in Kerr curcular orbit
arXiv: gr-qc/0502123.

34. LIGO Collaboration (B.Abbott, et al.)
A search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors
FERMILAB-PUB-05-071-A. arXiv: gr-qc/0501068. P040007-06-D.

2004

1. Duncan A. Brown
Searching for gravitational radiation from black hole MACHOS in the galactic halo
PhD Dissertation, University of Wisconsin-Milwaukee.

2. W.G.Anderson, E.E.Flanagan, A.C.Ottewill
Quasi-local contribution to the gravitational self-force
Phys.Rev.D71:024036,2005. arXiv: gr-qc/0412009.

3. LIGO Collaboration (B.Abbott, et al.)
Plans for the LIGO-TAMA joint search for gravitational wave bursts
Class.Quant.Grav.21:S1801-S1808,2004. arXiv: gr-qc/0412123. P040011-00-R

4. LIGO Collaboration (B.Abbott, et al.), M.Kramer, A.G.Lyne
Limits on gravitational wave emission from selected pulsars using LIGO data
Phys.Rev.Lett.94:181103,2005. arXiv: gr-qc/0410007. P040008-A-Z

5. L.M.Diaz-Rivera, E.Messaritaki, B.F.Whiting, S.Detweiler
Scalar field self-force effects on orbits about a Schwarzschild black hole
Phys.Rev.D70:124018,2004. arXiv: gr-qc/0410011.

6. D.A.Brown, et al.
Searching for gravitational waves from binary inspirals with LIGO
Class.Quant.Grav.21:S1625-S1633,2004.

7. Luis A. Anchordoqui, for the Pierre Auger Collaboration
The Pierre Auger Observatory: Science Prospects and Performance at First Light
arXiv: astro-ph/0409470v1.

8. Y.Itoh, M.A.Papa, B.Krishnan, X.Siemens
Chi-square test on candidate events from CW signal coherent searches
Class.Quant.Grav.21:S1667-S1678,2004. arXiv: gr-qc/0408092.

9. M.Shibata, K.Uryu, J.L.Friedman
Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits
Phys.Rev.D70:044044,2004. arXiv: gr-qc/0407036.

10. P.J.Montero, L.Rezzolla, S.Yoshida
Oscillations of vertically integrated relativistic tori. 2. Axisymmetric modes in a Kerr spacetime
Mon.Not.Roy.Astron.Soc.354:1040-1052,2004. arXiv: astro-ph/0407642.

11. S.Yoshida, S.Yoshida, Y.Eriguchi
R-mode oscillations of rapidly rotating barotropic stars in general relativity: Analysis by the relativistic Cowling approximation
arXiv: astro-ph/0406283.

12. X.Siemens, B.Allen, J.D.E.Creighton, M.Hewitson, M.Landry
Making h(t) for LIGO
Class.Quant.Grav.21:S1723-S1736,2004. arXiv: gr-qc/0405070. WISC-MILW-04-TH-1

13. B.Allen
A chi-squared time-frequency discriminator for gravitational wave detection
Phys.Rev.D71:062001,2005. arXiv: gr-qc/0405045.

14. P.R.Brady, J.D.E.Creighton, A.G.Wiseman
Upper limits on gravitational-wave signals based on loudest events
Class.Quant.Grav.21:S1775-S1782,2004. arXiv: gr-qc/0405044.

15. P.R.Brady, S.Ray-Majumder
Incorporating information from source simulations into searches for gravitational-wave bursts
Class.Quant.Grav.21:S1839-S1848,2004. arXiv: gr-qc/0405036.

16. LIGO Collaboration (B.Abbott, et al.)
First upper limits from LIGO on gravitational wave bursts
Phys.Rev.D69:102001,2004. arXiv: gr-qc/0312056.

17. C.Savage, N.Sugiyama, K.Freese
Age of the universe in the Cardassian model
JCAP 0510:007,2005. arXiv: astro-ph/0403196.

18. G.J.Olmo, W.Komp
Nonlinear Gravity Theories in the Metric and Palatini Formalisms
arXiv: gr-qc/0403092.

19. J.L.Friedman
The Cauchy problem on spacetimes that are not globally hyperbolic
arXiv: gr-qc/0401004.

2003

1. L.E.Parker, D.A.T.Vanzella
Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel
Phys.Rev.D69:104009,2004. arXiv: gr-qc/0312108.

2. C.Stephan-Otto, K.D.Olum, X.Siemens
Cosmological stretching of perturbations on a cosmic string
JCAP 0405:003,2004. arXiv: gr-qc/0312101. WISC-MILW-03-TH-3

3. LIGO Collaboration (B.Abbott, et al.)
Analysis of First LIGO Science Data for Stochastic Gravitational Waves
Phys.Rev.D69:122004,2004. arXiv: gr-qc/0312088.

4. LIGO Collaboration (B.Abbott, et al.)
First upper limits from LIGO on gravitational wave bursts
Class.Quant.Grav.21:S677-S684,2004. arXiv: gr-qc/0312056. P030011-01-Z.

5. D.A.Brown
Testing the LIGO Inspiral Analysis with Hardware Injections
Class.Quant.Grav.21:S797-S800,2004. arXiv: gr-qc/0312031.

6. B.Allen, G.Woan, for the LIGO Collaboration
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
Class.Quant.Grav.21:S671-S676,2004. arXiv: gr-qc/0311023.

7. D.H.J.Cho, J.L.Friedman
Stationary Kaluza-Klein states in minisuperspace framework
*Norman 2003, Quantum field theory under the influence of external conditions* 387-392.

8. S.Bose, et al.
Towards the first search for a stochastic background in LIGO data: applications of signal simulations
Class.Quant.Grav.20:S677-S687,2003.

9. LIGO Collaboration (B.Abbott, et al.)
Analysis of LIGO data for gravitational waves from binary neutron stars
Phys.Rev.D69:122001,2004. arXiv: gr-qc/0308069.

10. LIGO Collaboration (B.Abbott, et al.)
Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors
Phys.Rev.D69:082004,2004. arXiv: gr-qc/0308050.

11. LIGO Collaboration (B.Abbott, et al.)
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
Nucl.Instrum.Meth.A517:154-179,2004. arXiv: gr-qc/0308043.

12. LIGO Scientific Collaboration (G.M. Harry et al.)
The LIGO gravitational wave obervatories: Recent results and future plans
*Rio de Janeiro 2003, General relativity, pt. A* 308-336.

13. X.Siemens, K.D.Olum
Cosmic String Cusps with Small-Scale Structure: Their Forms and Gravitational Waveforms
Phys.Rev.D68:085017,2003. arXiv: gr-qc/0307113.

14. S.Anderson, et al.
Contribution to the EAC Meeting Report by the LIGO-GriPhyn Working Group
T030005-00-E

2002

1. B.Allen, et al.
Methods to Establish Upper Limits on the Gravitational Wave Amplitude of Continuous Gravitational Waves - Working Document
T020186-00-Z.

2. B.Allen, et al.
Detecting a Stochastic Background of Gravitational Radiation - Background Information
T020166-00-Z

3. B.Allen, et al.
S1 Preliminary Report by the Upper Limits Group on a Search for a Stochastic Gravitational Wave Background
T020165-00-Z

4. K.H.Lockitch, J.L.Friedman, N.Andersson
The rotational modes of relativistic stars: Numerical results
Phys.Rev.D68:124010,2003. arXiv: gr-qc/0210102.

5. K.Blackburn, et al.
Path to Super Computing 2002: LIGO-GriPhyN Demo
T020135-00-E

6. P.Gressman, et al.
Nonlinear r-modes in neutron stars: Instability of an unstable mode
Phys.Rev.D66:041303,2002.

7. P.R.Brady, M.W.Choptuik, C.Gundlach, D.W.Neilsen
Black-hole threshold solutions in stiff fluid collapse
Class.Quant.Grav.19:6359-6376,2002. arXiv: gr-qc/0207096.

8. L.E.Parker, W.Komp, D.A.T.Vanzella
Cosmological Acceleration Through Transition to Constant Scalar Curvature
arXiv: astro-ph/0206488. WISC-MILW-01-TH-4

9. B.Allen, M.A.Papa, B.F.Schutz
Optimal Strategies for Sinusoidal Signal Detection
Phys.Rev.D66:102003,2002. arXiv: gr-qc/0206032.

10. B.Allen, J.D.E.Creighton, E.E.Flanagan, J.D.Romano
Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II: Bayesian analyses
Phys.Rev.D67:122002,2003. arXiv: gr-qc/0205015.

11. P.Gressman, L-M.Lin, W-M.Suen, N.Stergioulas, J.L.Friedman
Nonlinear r-Modes in Neutron Stars: Instability of an unstable mode
Phys.Rev.D66:041303R,2002. arXiv: gr-qc/0301014.

2001

1. S.R.Anderson, et al.
LSC Data Analysis White Paper, Draft V
T990104-05-D

2. B.J.Owen, L.Lindblom
Gravitational radiation from the r-mode instability
Class.Quant.Grav.19:1247-1254,2002. arXiv: gr-qc/0111024.

3. L.Lindblom, B.J.Owen
Effect of hyperon bulk viscosity on neutron-star r-modes
Phys.Rev.D65:063006,2002. arXiv: astro-ph/0110558.

4. J.T.Whelan, et al.
Progress on stochastic background search codes for LIGO
Class.Quant.Grav. 19 (2002) 1521-1528. arXiv: gr-qc/0110019.

5. W.G.Anderson, et al.
Burst/Stochastic Mock Data Challenge
T010114-00-E

6. S.Anderson, et al.
Conventions for Data and Software Products of LIGO and the LSC
T010095-00-Z

7. J.L.Friedman, K.Uryu, M.Shibata
Thermodynamics of binary black holes and neutron stars
Phys.Rev.D65:064035,2002. arXiv: gr-qc/0108070.

8. B.Allen, et al.
Stochastic Sources Upper Limit Group E7 Report
T020115-00-Z

9. L.Rezzolla, K.Uryu, S.Yoshida
Gravitational Wave Emission by Cataclysmic Variables: numerical models of semi-detached binaries
Mon.Not.Roy.Astron.Soc.327:888,2001. arXiv: gr-qc/0107019.

10. B.Allen, J.D.E.Creighton, E.E.Flanagan, J.D.Romano
Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise I: Frequentist analyses
Phys.Rev.D65:122002,2002. arXiv: gr-qc/0105100.

11. M.Barnes, et al.
The Wrapper API's Baseline Requirements & Implementation
T990097-14-E

12. A.G.Wiseman
Operating Procedures for the LIGO/LSC Software Change Control Board
T010050-00-Z

13. N.Christensen, A.C.Ottewill, T.Robinson
E2 Correlations
T010038-00-Z

14. B.Allen, et al.
Determine Upper Limits on Event Rates for Inspiralling Compact Binaries with LIGO Engineering Data
T010025-00-Z

15. J.L.Friedman, K.H.Lockitch
Implications of the r-mode instability of rotating relativistic stars
*Rome 2000, Recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Pt. A* 163-181. arXiv: gr-qc/0102114.

16. B.Allen, et al.
Determine Upper Limits on Event Rates for Inspiralling Compact Binaries with LIGO Engineering Data
T010025-00-Z

17. B.Allen, et al.
Proposal to Set an Upper Limit on Stochastic Sources Using LIGO Engineering Data
T010017-00-Z

18. W.G.Anderson, et al.
MPI Mock Data Challenge
T010024-00-Z

2000

1. B.Allen, et al.
LIGO's Virtual Data Requirements
T000135-00-D

2. P.R.Brady
Gravitational wave data analysis in the LIGO Scientific Collaboration

3. W.G.Anderson, P.R.Brady, J.D.E.Creighton, E.E.Flanagan
An excess power statistic for detection of burst sources of gravitational radiation
Phys.Rev.D63:042003,2001. arXiv: gr-qc/0008066. WISC-MILW-99-TH-01

4. K.H.Lockitch, N.Andersson, J.L.Friedman
The rotational modes of relativistic stars: Analytic results
Phys.Rev.D63:024019,2001. arXiv: gr-qc/0008019.

5. T.Creighton
Tumbleweeds and airborne gravitational noise sources for LIGO
arXiv: gr-qc/0007050.

6. L.E.Parker, A.Raval
New quantum aspects of a vacuum-dominated universe
Phys.Rev.D62:083503,2000, Erratum-ibid.D67:029903,2003. arXiv: gr-qc/0003103. WISC-MILW-00-TH-03

7. I.S.Booth, J.D.E.Creighton
A quasilocal calculation of tidal heating
Phys.Rev.D62:067503,2000. arXiv: gr-qc/0003038.

8. D.Debra, et al.
Baseline LIGO-II Implementation Design Description of the Stiff Active Seismic Isolation System
T000024-00-U

9. J.How, W.Hua, B.Lantz, S.Richman
Computer Modeling and Simulation in Support of the Stiff Suspension Active Seismic Isolation for LIGO II
T000016-01-D

10. W.G.Anderson, P.R.Brady, J.D.E.Creighton, E.E.Flanagan
A power filter for the detection of burst sources of gravitational radiation in interferometric detectors
Int.J.Mod.Phys.D9:303-307,2000. arXiv: gr-qc/0001044. WISC-MILW-00-TH-02

11. A.G.Wiseman
The self-force on a static scalar test-charge outside a Schwarzschild black hole
Phys.Rev.D61:084014,2000. arXiv: gr-qc/0001025. WISC-MILW-00-TH-01

12. R.Balasubramanian
Time-Frequency Detection of Gravitational Waves: Non-Gaussian Noise
T000139-00-D.

13. B.Allen, A.C.Ottewill
Multi-Taper Spectral Analysis in Gravitational Wave Data Analysis
Gen.Rel.Grav.32:385-398,2000.

1999

1. B.Allen, W.Hua, A.C.Ottewill
Automatic cross-talk removal from multi-channel data
arXiv: gr-qc/9909083.

2. J.L.Friedman, K.H.Lockitch
Gravitational-wave driven instability of rotating relativistic stars
Prog.Theor.Phys.Suppl.136:121-134,1999. arXiv: gr-qc/9908083.

3. L.E.Parker, A.Raval
Vacuum-driven Metamorphosis
arXiv: gr-qc/9908069. WISC-MILW-99-TH-11

4. L.E.Parker, A.Raval
Vacuum effects of ultra-low mass particle account for Recent Acceleration of Universe
Phys.Rev.D60:123502,1999, Erratum-ibid.D67:029902,2003. arXiv: gr-qc/9908013. WISC-MILW-99-TH-10

5. B.Allen, E.E.Flanagan, M.A.Papa
Is the squeezing of relic gravitational waves produced by inflation detectable?
Phys.Rev.D61:024024,2000. arXiv: gr-qc/9906054. WISC-MILW-99-TH-07

6. W.G.Anderson, R.Balasubramanian
Time-frequency detection of gravitational waves
Phys.Rev.D60:102001,1999. arXiv: gr-qc/9905023. WISC-MILW-98-TH-20

7. L.E.Parker, A.Raval
Non-perturbative effects of vacuum energy on the recent expansion of the universe
Phys.Rev.D60:063512,1999, Erratum-ibid.D67:029901,2003. arXiv: gr-qc/9905031. WISC-MILW-99-TH-06

8. W.G.Anderson, R.Balasubramanian
Time-frequency detection of Gravitational Waves
Phys.Rev.D60:102001,1999. arXiv: gr-qc/9905023. WISC-MILW-98-TH-20

9. W.G.Anderson, W.Israel
Quantum Flux from a Moving Spherical Mirror
Phys.Rev.D60:084003,1999. arXiv: gr-qc/9904016. WISC-MILW-99-TH-02

10. B.Allen, et al.
Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy
Phys.Rev.Lett.83:1498,1999. arXiv: gr-qc/9903108. P990019-00-E WISC-MILW-99-TH-05

11. B.Allen, W.Hua, A.C.Ottewill
Automatic cross-talk removal from multi-channel data
WISC-MIL-99-TH-04

12. W.G.Anderson
Unmodelled Sources
draft of section for LSC Data Analysis White Paper.

13. P.Brady, C.Chambers, W.Laarakkers, E.Poisson
Radiative falloff in Schwarzschild-de Sitter spacetime
Phys.Rev.D60:064003,1999. arXiv: gr-qc/9902010.

14. P.P.Avelino, E.P.S.Shellard, J.H.P.Wu, B.Allen
Structure Formation Seeded by Cosmic Strings
Astrophys.Space Sci.261:315-316,1999.

15. S.Winters-Hilt, I.H.Redmount, L.E.Parker
Physical Distinction Among Alternative Vacuum States in Flat Space-Time Geometries
Phys.Rev.D60:124017,1999.

16. W.G.Anderson, R.G.McLenaghan, F.D.Sasse
Huygens' Principle for the Non-Self-Adjoint Scalar Wave Equation on Petrov type III Space-Times
Ann. Inst. Henri Poincare, Phys. Theor. 70, (1999).

1997

1. B.Allen, J.Romano
Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities
Phys.Rev.D59:102001,1999. arXiv: gr-qc/9710117.

2. B.Allen, P.R.Brady
Quantization Noise in LIGO Interferometers, Rev. 02
T970128-02-E

1996

1. B.Allen
LIGO Calibration Accuracy
T960189-00-E

2. B.Allen, R.Brustein
Detecting relic gravitational radiation from string cosmology with LIGO
Phys. Rev. D 55, 3260-3264 (1997). arXiv: gr-qc/9609013.

3. B.Allen, A.C.Ottewill
Detection of Anisotropies in the Gravitational-Wave Stochastic Background
Phys.Rev. D56 545-563 (1997). arXiv: gr-qc/9607068. WISC-MILW-96-TH-15


UWM Center for Gravitation and Cosmology | http://www.gravity.phys.uwm.edu/ | contact@gravity.phys.uwm.edu