The Chandra Galactic Bulge Survey

Tom Maccarone (Texas Tech) on behalf of a large consortium

Chris Britt, Catherine Fielder (Texas Tech), Peter Jonker (SRON), Gijs Nelemans (Nijmegen), Danny Steeghs (Warwick), Rob Hynes (LSU), Manu Torres (SRON), Sandra Greiss (Warwick), Chris Johnson (LSU) and many others
Surveys of X-ray binaries

Belczynski et al. 2011; see also Farr et al. 2011; Ozel et al. 2010; Kreidberg et al. 2012

Lattimer & Prakash 2007
Populations of X-ray binaries

From Lamb 2006

Andreas Irrgang web page
Severe biases from using transients!

Chen, Shrader & Livio 1997
Shallow and out of the Plane...

Sources easier to follow-up (c.f. Muno field)

Optimize ratio of X-ray binaries to everything else! (c.f. ChamPlane)
Source classes

X-ray binaries -- NS LMXBs often X-ray bright

Cataclysmic variables -- hard to separate from BHs without spectra; both are mostly foreground objects and should be UV bright

Normal stars/active binaries -- optically bright, OGLE variability

Background objects -- AGN at these X-ray fluxes will be radio bright

Surprises -- millisecond pulsars, or protostars?
Classifying the sources

<table>
<thead>
<tr>
<th>Class</th>
<th>Fx/Fopt</th>
<th>He4471/Hbeta</th>
<th>He6678/Hbeta</th>
<th>He II 4686/Hbeta</th>
<th>Radio</th>
<th>Variability</th>
<th>UV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>0.01-1</td>
<td>0.22</td>
<td>0.1-0.5</td>
<td><0.4</td>
<td>None</td>
<td>flickering, orbital period, DNe</td>
<td>WD surface</td>
</tr>
<tr>
<td>Mag. CV</td>
<td>0.1-10</td>
<td>0.17</td>
<td>0.1-0.5</td>
<td>>0.4</td>
<td>None</td>
<td>flickering, pulsation, DNe</td>
<td>WD surface</td>
</tr>
<tr>
<td>qLMXB NS</td>
<td>0.1-1</td>
<td>~0</td>
<td>0.12</td>
<td>~0</td>
<td>None</td>
<td>flickering, ellipsoidal</td>
<td>None (BG)</td>
</tr>
<tr>
<td>qLMXB BH</td>
<td>0.01-1</td>
<td>~0</td>
<td>0.12</td>
<td>~0</td>
<td>faint</td>
<td>flickering, ellipsoidal</td>
<td>some (FG)</td>
</tr>
<tr>
<td>LMXXB</td>
<td>>100</td>
<td><0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>bright</td>
<td>flickering, ellipsoidal, bursts</td>
<td>if not extincted</td>
</tr>
<tr>
<td>Star</td>
<td><0.001</td>
<td>none</td>
<td>none</td>
<td>some</td>
<td>usually</td>
<td>some</td>
<td>usually</td>
</tr>
<tr>
<td>AGN</td>
<td>~1</td>
<td>redshifted</td>
<td>redshifted</td>
<td>redshifted</td>
<td>Usually</td>
<td>yes</td>
<td>probably absorbed</td>
</tr>
</tbody>
</table>

Primarily from Britt et al. 2013, supplemented by Maccarone et al. 2012, Fielder et al, in prep
Get good enough optical data!

- $F_X/F_{opt} \approx 0.1$ for accretion powered sources
- $F_X/F_{opt} \approx 0.001$ for coronally active stars
- Past surveys, with very deep X-ray coverage and very shallow OIR coverage detect mostly coronally active stars!
- To avoid this, we need wider, shallower X-ray data and deeper optical data than past groups have used for similar projects
Multi-wavelength coverage

Optical photometry: r’, i’, Halpha to 23rd in 2006
r’ variability survey in 2010
r’ variability survey in 2013

Optical spectroscopy: numerous runs, about half of sources now covered

UV - Swift survey of part of region

Radio: 11 hours GBT time - ongoing
Multi-wavelength for free!

Infrared - Vista Variables in the Via Lactea, Spitzer GLIMPSE, WISE

Radio - NVSS
UV-Galex

WFIRST should cover about $\frac{1}{3}$ of it!
Some results

From Britt et al. 2013

From Hynes et al. 2013
Identifications to date

Sources: about 1600
Tycho stars: 69 (Hynes et al. 2012)
OGLE variables: 209 (Udalski et al. 2012)
AGN: 12 (Maccarone et al. 2012)
CVs: ~20 (Britt et al. 2013; Torres et al. 2013)
LMXB candidates: ~10 (Torres et al. 2013)
A bizzarre transient

From 2006

From 2010
What’s next?

- GBT survey -- sources with no IR counterpart and low reddening are good MSP candidates
- EVLA survey -- to propose
- Starting to exploit this for real science -- e.g. correlation between X-rays and dwarf nova rate (Britt et al., in prep)
- Classifying more of the objects, finding the black holes and neutron stars

This is very much work in progress, but we are already finding exciting things!