Initial boundary value problem of the Z4c formulation of General Relativity

Milton Ruiz
University of Illinois at Urbana-Champaign

in collaboration with

David Hilditch
TPI-Friedrich-Schiller-Universität Jena

Midwest Relativity Meeting, Oct 26th, 2013
Formulations of Numerical Relativity

BSSN-puncture gauge:
- BHs as coordinate singularity,

Generalized Harmonic gauge:
- Excision BH boundaries,

Is there another formulation with the strengths of both?
Formulations of Numerical Relativity

BSSN-puncture gauge:
- BHs as coordinate singularity,
- 0-speed mode in constraint subsystem,

Generalized Harmonic gauge:
- Excision BH boundaries,
- Trivial wave-like constraint subsystem,

Is there another formulation with the strengths of both?
Formulations of Numerical Relativity

BSSN-puncture gauge:
- BHs as coordinate singularity,
- 0-speed mode in constraint subsystem,
- Well-posed IVP (continuous dependence of initial data),

Generalized Harmonic gauge:
- Excision BH boundaries,
- Trivial wave-like constraint subsystem,
- Well-posed IBVP (continuous dependence of ID even with BCs),

Is there another formulation with the strengths of both?
Formulations of Numerical Relativity

BSSN-puncture gauge:
- BHs as coordinate singularity,
- 0-speed mode in constraint subsystem,
- Well-posed IVP (continuous dependence of initial data),
- Sommerfeld BCs,

Generalized Harmonic gauge:
- Excision BH boundaries,
- Trivial wave-like constraint subsystem,
- Well-posed IBVP (continuous dependence of ID even with BCs),
- Constraint preserving BCs,

Is there another formulation with the strengths of both?
Formulations of Numerical Relativity

BSSN-puncture gauge:
- BHs as coordinate singularity,
- 0-speed mode in constraint subsystem,
- Well-posed IVP (continuous dependence of initial data),
- Sommerfeld BCs,
- No constraint damping scheme,

Generalized Harmonic gauge:
- Excision BH boundaries,
- Trivial wave-like constraint subsystem,
- Well-posed IBVP (continuous dependence of ID even with BCs),
- Constraint preserving BCs,
- Constraint damping scheme,

Is there another formulation with the strengths of both?
Formulations of Numerical Relativity

BSSN-puncture gauge:
- BHs as coordinate singularity,
- 0-speed mode in constraint subsystem,
- Well-posed IVP (continuous dependence of initial data),
- Sommerfeld BCs,
- No constraint damping scheme,
- Puncture gauge for advecting BHS.

Generalized Harmonic gauge:
- Excision BH boundaries,
- Trivial wave-like constraint subsystem,
- Well-posed IBVP (continuous dependence of ID even with BCs),
- Constraint preserving BCs,
- Constraint damping scheme,
- Dynamics control of coordinates through gauge sources

Is there another formulation with the strengths of both?
The Z4c formulation

A natural choice seems to be a conformal decomposition of Z4 (Bona *et. al.* 04-05, Bernuzzi-Hilditch 09, Alic *et. al.* 11)

\[R_{\mu\nu} + \nabla_\mu Z_\nu + \nabla_\nu Z_\mu = 8\pi \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) \]

\[\Downarrow \]

\[\tilde{\gamma}^{ij} = \gamma^{-\frac{1}{3}} \gamma^{ij}, \quad \hat{K} = \gamma^{ij} K_{ij} - 2\Theta, \quad \chi = \gamma^{-\frac{1}{3}}, \]

\[\tilde{A}_{ij} = \gamma^{-\frac{1}{3}} (K_{ij} - \frac{1}{3} \gamma^{ij} K), \quad \tilde{\Gamma}^i = 2\tilde{\gamma}^{ij} Z_j + \tilde{\gamma}^{ij} \tilde{\gamma}^{kl} \tilde{\gamma}_{jk,l}. \]

- Conformal variables allow puncture evolution,
- Trivial wave-like constraint subsystem,
- Strongly hyperbolic with puncture gauge,
- Constraint damping.
Why boundary conditions?

- **Simple model**: evolution of a TOV star with BC at $r = 20M$

![Graph showing ρ(t)/ρ_c(0) over time](image)

Sommerfeld case: non-convergent reflections from the boundary affect the dynamics of the star.
Why boundary conditions?

- **Simple model**: evolution of a TOV star with BC at $r = 20M$

- **CP boundaries**: the absorbing properties of the BCs completely solve this problem.
Boundary conditions

How to impose BCs?

- Find out the in/outgoing modes,
- Specify BCs only on the incoming modes,

We want to impose BCs such that:

- The IBVP must be well-posed (continuous dependence of initial data),
- Constraint preservation (physical solution),
- Control of the incoming gravitational radiation.
High order BCs for Z4c

In 3D simulations we need to specify 10 BCs.

BCs for constraint subsector:

- The conditions which preserve the constraints are (4 conditions):

 \[(l^a \partial_a)^L \Theta \doteq 0,\]
 \[(l^a \partial_a)^L Z^i \doteq 0.\]

In flat space: \[(l^a \partial_a) = \partial_t - \partial_x.\]

* Why high? better absorption properties: \(L = 1, 2, 3, \ldots\)
In 3D simulations we need to specify 10 BCs.

BCs physical subsector:

- **Incoming-radiation-controlling condition** (2 conditions)
 \[
 (l^a \partial_a)^{L-1} \Psi_0 \doteq h \Psi_0 ,
 \]
 where the Newman-Penrose scalar \(\Psi_0 \) is defined by
 \[
 \Psi_0 = C_{\alpha\beta\nu\mu} l^\alpha m^\beta l^\nu m^\mu .
 \]
High order BCs for Z4c

Boundary conditions gauge subsector (4 conditions):

- **Lapse:**
 \[
 (i^{a} \partial_{a})^{L} (\partial_{t} - \beta \partial_{x}) \alpha \triangleq h_{\alpha} \quad i^{a} = \frac{1}{\sqrt{2}} (n^{a} + \sqrt{\mu_{L}} s^{a})
 \]

- **Longitudinal shift component:**
 \[
 (j^{a} \partial_{a})^{L} \left(\partial_{0} \Lambda + 4 \frac{\tilde{\mu} S - 1}{\tilde{\mu} S_{L} - 1} \Theta \right) \triangleq h_{\Lambda}
 \]

- **Transverse shift components:**
 \[
 \gamma^{i k} s_{[k q j]}^{A} \left(k^{a} \partial_{a} \right)^{L} \partial_{i} \beta_{j} \triangleq h^{A}
 \]
Kreiss-Agranovich-Métiever theory

- Consider an IBVP for a **first order strongly hyperbolic** PDE system

- Solve the boundary problem using the Laplace-Fourier transformation

\[u(t, x, x^A) = \tilde{u}(x) \exp(st + i\omega_A x^A). \]

Definition

(Kreiss 70’s:) The above IBVP is called **boundary stable** if for all \(\text{Re}(s) > 0 \) and \(\omega \in \mathbb{R} \) there is a constant \(C \) such that

\[|\tilde{u}(s, 0, \omega)| \leq C |\tilde{g}(s, \omega)|. \]

There is a symmetrizer \(H = H(s, \omega) \) which allows to show that the IBVP is well-posed via a standard **energy estimation** in the frequency domain.
Initial boundary value problem of the Z4c formulation of General Relativity

IBVP for the Z4c system

IBVP for the Z4c system: \(L_2\)-norm estimate

\[
\eta \| \alpha \|_{\eta,L+1,\Omega}^2 + \eta \sum_i \| \beta^i \|_{\eta,L+1,\Omega}^2 + \eta \sum_{ij} \| \gamma_{ij} \|_{\eta,L+1,\Omega}^2 + \\
\eta \| \alpha \|_{\eta,L+1,T}^2 + \eta \sum_i \| \beta^i \|_{\eta,L+1,T}^2 + \eta \sum_{ij} \| \gamma_{ij} \|_{\eta,L+1,T}^2 + \\
\leq C_{L+1} \left(\| h_\alpha \|_{\eta,L+1,T}^2 + \cdots + \| h_{\psi_0} \|_{\eta,L+1,T}^2 \right),
\]

The resulting IBVP for the Z4c formulation with the previous BCs is well-posed \(\rightarrow\) The solution does not grow arbitrarily fast.
Final comments

- We have specified high order boundary conditions for the gauge, constraint violating and the physical degrees of freedom,

- Using Kreiss-Agranovich-Métiever theory we have shown that the resulting IBVP is well-posed in the frozen coefficient approximation. It is expected that these results can be extended to the nonlinear case,

- The Z4c formulation has the strengths of both BSSN and GHG formulations,

- Some of these conditions have been implemented and tested numerically.

Initial boundary value problem of the Z4c formulation of General Relativity

Additional notes
Energy estimation

If the system is strongly hyperbolic we can define a Hermitian matrix such that

$$HP - P^T H = 0.$$

The importance of the symmetrizer H is related to the fact that

$$\langle u, \nu \rangle \equiv u^\dagger H \nu, \quad \Rightarrow \quad \|u\|^2 \equiv \langle u, u \rangle = u^\dagger H u.$$

The norm defined above is usually called an energy norm.

- wave equation

$$\|u\|^2 = (\partial_t)^2 \phi + \nu^2 \sum_i (\partial_i \phi)^2.$$

- Check the evolution of this norm.
Kreiss Theory

If the PDE system is strictly hyperbolic then (Kreiss 70’s)

Definition

If the above IBVP is boundary stable then it is strongly well-posed in the generalized sense. The solution \(u = u(t, x^i) \) satisfies the estimation

\[
\int_0^t \| u(\cdot, \tau) \|_\Sigma^2 \, d\tau + \int_0^t \| u(\cdot, \tau) \|_{\partial \Sigma}^2 \, d\tau \\
\leq K_T \left\{ \int_0^t \| F(\cdot, \tau) \|_\Sigma^2 \, d\tau + \int_0^t \| g(\cdot, \tau) \|_{\partial \Sigma}^2 \, d\tau \right\} ,
\]

in the interval \(0 \leq t \leq T \) for a positive constant \(K_T \) which does not depend on \(F \) and \(g \). Here \(\| \cdot \|_\Sigma, \| \cdot \|_{\partial \Sigma} \) denote the \(L_2 \) norm with respect to the half-space and the boundary surface, respectively.

\[
\int_0^t \| u(\cdot, \tau) \|_\Sigma^2 \, d\tau + \int_0^t \| u(\cdot, \tau) \|_{\partial \Sigma}^2 \, d\tau \\
\leq K_T \left\{ \int_0^t \| F(\cdot, \tau) \|_\Sigma^2 \, d\tau + \int_0^t \| g(\cdot, \tau) \|_{\partial \Sigma}^2 \, d\tau \right\} ,
\]
Assume that the system is strongly hyperbolic and the eigenvalues of the principal symbol are

- real and pairwise distinct (strictly hyperbolic),
- real and have Z4 constant multiplicity \(\rightarrow \) Z4

if additionally the system is boundary stable

\[|\tilde{u}(s, 0, \omega)| \leq C |\tilde{g}(s, \omega)| \]

then, there is a smooth symmetrizer \(H = H(s, \omega) \). Well-posedness is shown through an usual energy estimation.