Quark-Gluon Plasma in the NDL Equation of State for Supernova Simulations

J. Pocahontas Olson¹
Matthew Meixner¹ Grant Mathews¹
N. Q. Lan² H. E. Dalhed³

¹University of Notre Dame
²Hanoi National University of Education
³Lawrence Livermore National Laboratory
Core-Collapse Supernovae Simulation

Routine Components

- Hydrodynamics
- Neutrino Transport
- Equation of State
Core-Collapse Supernovae Simulation

Routine Components

- Hydrodynamics
- Neutrino Transport
- Equation of State
Equation of State Archetypes

Commonly Used
- Liquid Drop Model
 - Lattimer & Swesty
- Relativistic Mean Field Theory
 - Shen et. al.

Ours
- Density Functional Theory
 - NDL EoS
Regimes

Low Density

NSE

n, p, 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 56Ni

α, <A>

NSE

Not in NSE

Hadrons

n, p

Pions

n, p

π⁺, π⁻, π⁰

Quark Gluon Plasma?

Nuclear Saturation Density
Mixed Phase Transition

Volume Fraction:
\[\chi \equiv \frac{V_Q}{V_H + V_Q} \]

Conserve:
- Pressure
- Charge
- Baryon Number
Pure Quark-Gluon Plasma

Grand Potential Function

\[\Omega = \Omega_q^{(0)} + \Omega_g^{(0)} + \Omega_q^{(2)} + \Omega_g^{(2)} + BV \]

3 flavors of quarks

strong coupling \(\propto \alpha_s \)

\[P = - \left(\frac{\partial \Omega}{\partial V} \right)_{\mu,T,Y_e} \quad ; \quad S = - \left(\frac{\partial \Omega}{\partial T} \right)_{\mu,V,Y_e} \]
Phase Diagram

Temperature (MeV) vs. Baryon Number Density (fm$^{-3}$) for different values of Y_e.
Collapse: $\Gamma < \frac{4}{3}$
EoS Prediction:
Neutron Star Mass vs. Radius Relation

![Graph showing the relationship between neutron star mass and radius for different EoS models.](image-url)
EoS Prediction:
Neutron Star Mass vs. Radius Relation
Mixed QGP cores not excluded!
Varying the Bag Constant

Mixed QGP cores not excluded!
Future Work

- Supernovae simulation runs, with and without QGP phase, for various B and α_s
- Neutrino spectrum from Blackhole Formation
Questions?