Using astrophysical knowledge in gravitational-wave data analysis of binary inspirals

Marc van der Sluys

Radboud University Nijmegen / FOM

Vivien Raymond, Ben Farr, Ilya Mandel, Vicky Kalogera
Gijs Nelemans, Sweta Shah
Christian Röver, Nelson Christensen, Alberto Vecchio
Outline

1. Introduction
 - Gravitational waves
 - LIGO/Virgo

2. GW parameter estimation
 - Signal and noise
 - Markov-chain Monte Carlo algorithm
 - Example SPINPSPIRAL analysis
 - MCMC examples
 - Analysis of a BH-NS signal
 - Analysis of a BH-BH signal
 - The importance of having spins

3. Using astrophysical information
 - Example: GRB without spin
 - Example: GRB with spin

4. Conclusions
Gravitational waves

GWs:

- "Ripples in spacetime"
- Predicted by Einstein's theory of General Relativity
- Indirectly observed for the Hulse-Taylor binary pulsar:

(Ertem et al., Science, 2008)
Gravitational waves

- propagate transversely at the speed of light
- are quadrupole radiation at the lowest order
- stretch and squeeze spacetime in two polarisations
- allow us to measure their amplitude

Strain: \[h(t) = h_+(t)F_+(t) + h_\times(t)F_\times(t) = \frac{\delta L(t)}{L} \sim 10^{-22} \]
Inspiral waveforms with increasing spin

LIGO and Virgo detect the last ~ 10 s of a binary inspiral:

$$a_{\text{spin}} \equiv S/M^2 = 0.0, 0.1 \text{ and } 0.5$$
Signal injection into detector noise

Example:
- Using two 4-km detectors H1, L1
- Inject signal coherently
- $\Sigma \text{SNR} = 17$
- Retrieve physical parameters using MCMC
Use Markov-Chain Monte Carlo for parameter estimation
Follow-up after detection
Gaussian, stationary noise or LIGO/Virgo detector data
Analyse software injections, hardware injections, detection candidates/interesting events
Include spin in injections and analysis
Use any network composed of LIGO/Virgo detectors:

\[
\text{PDF}(\vec{\lambda}) \propto \text{prior}(\vec{\lambda}) \times \prod_i L_i(d|\vec{\lambda})
\]

Result: posterior probability-density function (PDF) of the parameter set that describes the model (9–12–15 D)
SPIN_SPIRAL example

\[M (M_\odot) \]

Signal: 2.994
Median: 2.967
\[\Delta_{95\%} \]: 2.72%

Iteration: 4.59E+06
Data points: 3.08E+05
Correlations increase with spin

Parameters:
- BH-NS
- H1 & L1
- $M_1 = 10\ M_\odot$
- $M_2 = 1.4\ M_\odot$
- $a_{\text{spin}} = 0.1, 0.8$
- $\theta_{\text{SL}} = 55^\circ$
- Network SNR ≈ 25
MCMC results for the analysis of a BH-NS signal

Parameters:
- $H1, L1, V$
- $M = 10, 1.4 \, M_\odot$
- $d_L = 22.4 \, \text{Mpc}$
- $a_{\text{spin}} = 0.8$, $\theta_{SL} = 55^\circ$
- $\Sigma \, \text{SNR} \approx 17.0$
- simulated noise

van der Sluys et al., 2008
Sky position for signals with different spins

Spinning BH, non-spinning NS:
$10 + 1.4 \, M_\odot$, 16–22 Mpc, Σ SNR=17

2 detectors, $a_{\text{spin}} = 0.0$
2-σ accuracy: $821^\circ\!2$

2 detectors, $a_{\text{spin}} = 0.5$
2-σ accuracy: $163^\circ\!2$

3 detectors, $a_{\text{spin}} = 0.5$
2-σ accuracy: $40^\circ\!2$

van der Sluys et al., 2008; Raymond et al., 2009; Poster by Ben Farr
Analysis of a BH-BH signal with spins

van der Sluys et al., in preparation

HS-2:
- 3.5-pN waveform
- 3 detectors (H1,L1,V)
- $M = 7.6 \, M_\odot$
- $\eta = 0.238$
- $M_1 = 11.0 \, M_\odot$
- $M_2 = 7.0 \, M_\odot$
- $a_{s1,2} = 0.9, 0.7$
- $\theta_{s1,2} = 10, 20^\circ$
- $d_L = 74.5 \, \text{Mpc}$
- $\Sigma \text{SNR}=15$
- simulated noise
The importance of having spins in your analysis

Signal with spins

Analysis with spinning template

Analysis with non-spinning template

van der Sluys et al., in preparation
Using astrophysical data to constrain parameters

1 detector (H1):

- **M (M_☉)** distribution:
 - 1.162, 1.164, 1.166, 1.168
- **η** distribution:
 - 0.2, 0.22, 0.24
- **d_L (Mpc)** distribution:
 - 0, 5, 10, 15, 20

- **M_1 (M_☉)** distribution:
 - 1.5, 2
- **M_2 (M_☉)** distribution:
 - 0.8, 1, 1.2
- **ζ (°)** distribution:
 - 0, 50, 100, 150

3 detectors (H1,L1,V):

- **t_c (s)** distribution:
 - 0, 0.01, 0.02, 0.03
- **d_L (Mpc)** distribution:
 - 0, 10, 20, 30
- **ζ (°)** distribution:
 - 0, 100, 150
- **ψ (°)** distribution:
 - 0, 50, 100, 150

NS-NS, non-spinning:
1.2 + 1.5 M_☉

\[d_L \approx 10.2 - 17.8 \text{ Mpc} \]

(\(\Sigma\) SNR=15.0)

- No astrophysical information
- Sky position known
- Sky position and distance known

van der Sluys et al., in preparation

See also: Nissanke et al., 2010
Using astrophysical data to constrain parameters

2 detectors (H1,L1):

BH-NS, spinning BH:
$10.4 \pm 1.4 M_\odot$
$d_L \approx 20.2 \text{ Mpc}$
($\Sigma \text{SNR}=15.0$)

No astrophysical information

Sky position known

Sky position and distance known

van der Sluys et al., in preparation
Conclusions

SPINspiral

- SPINspiral can recover the 12–15 parameters of a binary inspiral, including one or two spins, using an MCMC technique.

- Sky-position reconstruction (few $\times 10^2$) is poor for astrophysical standards.

- Combination of position, distance and time can lead to association with an electromagnetic detection (e.g. GRB).

Taking into account spins

- The inclusion of spin adds significantly to the number of dimensions (9–12–15) and introduces (strong) correlations.

- Failing to take into account spin can result to biases in especially mass parameters.
Conclusions (numbers are preliminary)

Using astrophysical knowledge for GW data analysis: no spins

- Knowing the sky position of a source improves determination of:
 - distance ($\sim 20 - 50\%$)
 - inclination
- Knowing the position *and distance* improves inclination further, also in 1-detector analysis

Using astrophysical knowledge for GW data analysis: spins

- Knowing the sky position of a source improves determination of:
 - distance ($\sim 50\%$)
 - inclination, polarisation angle ($50 - 90\%$)
 - masses ($\sim 20\%$)
 - spin angles
- Knowing the position *and distance* improves:
 - spin magnitude ($\sim 20\%$)
End...
Predicted detection rates

<table>
<thead>
<tr>
<th></th>
<th>NS-NS</th>
<th>BH-NS</th>
<th>BH-BH</th>
<th>NS-NS</th>
<th>BH-NS</th>
<th>BH-BH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.015</td>
<td>0.004</td>
<td>0.01</td>
<td>32</td>
<td>67</td>
<td>160</td>
</tr>
<tr>
<td>Enhanced</td>
<td>0.15</td>
<td>0.04</td>
<td>0.11</td>
<td>71</td>
<td>149</td>
<td>349</td>
</tr>
<tr>
<td>Advanced</td>
<td>20</td>
<td>5.7</td>
<td>16</td>
<td>364</td>
<td>767</td>
<td>1850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NS-NS</th>
<th>BH-NS</th>
<th>BH-BH</th>
<th>NS-NS</th>
<th>BH-NS</th>
<th>BH-BH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.15</td>
<td>0.13</td>
<td>1.7</td>
<td>32</td>
<td>67</td>
<td>160</td>
</tr>
<tr>
<td>Enhanced</td>
<td>1.5</td>
<td>1.4</td>
<td>18</td>
<td>71</td>
<td>149</td>
<td>349</td>
</tr>
<tr>
<td>Advanced</td>
<td>200</td>
<td>190</td>
<td>2700</td>
<td>364</td>
<td>767</td>
<td>1850</td>
</tr>
</tbody>
</table>

Estimates assume $M_{NS} = 1.4 M_\odot$ and $M_{BH} = 10 M_\odot$

CBC group, rates document
MCMC analyses

MCMC parameters

Masses: \(\mathcal{M} \equiv (M_1 + M_2) \eta^{3/5} \) & \(\eta \equiv \frac{M_1 M_2}{(M_1 + M_2)^2} \), distance: \(\log d_L \), time and phase at coalescence: \(t_c \) & \(\varphi_c \), position: \(\alpha \) & \(\sin \delta \), spin magnitude: \(a_{\text{spin}_{1,2}} \), spin orientation: \(\cos \theta_{\text{spin}_{1,2}} \) & \(\varphi_{\text{spin}_{1,2}} \) & binary orientation: \(\cos(\iota) \) & \(\psi \)

MCMC set-up

- \(\geq 5 \) serial chains per run, starting from offset parameter values
- Chain length: \(\sim \) few \(\times 10^6 \) states; burn-in: \(\sim \) few \(\times 10^5 \) states
- Run time: 10 days on a 2.8 GHz CPU for 1.5-pN waveform; \(\sim 2.5 \times \) longer for 3.5-pN

Analysis details: BH-NS signal

Signals injected in simulated noise for H1L1V @ SNR \(\approx 17.0 \)

Fiducial binary: \(M_1, 2 = 10 + 1.4 M_\odot \), \(d_L = 16–23 \) Mpc

Spin: \(a_{\text{spin}} = 0.0, 0.1, 0.5, 0.8, \theta_{\text{SL}} = 20^\circ, 55^\circ \)
MCMC analyses

MCMC parameters

| Masses: $\mathcal{M} \equiv (M_1 + M_2) \eta^{3/5}$ & $\eta \equiv \frac{M_1 M_2}{(M_1 + M_2)^2}$, distance: $\log d_L$, time and phase at coalescence: t_c & φ_c, position: α & $\sin \delta$, spin magnitude: a_{spin}, spin orientation: $\cos \theta_{\text{spin}}$ & φ_{spin} & binary orientation: $\cos(\iota)$ & ψ |
|---|---|

MCMC set-up

- ≥ 5 serial chains per run, starting from offset parameter values
- Chain length: \sim few $\times 10^6$ states; burn-in: \sim few $\times 10^5$ states
- Run time: 10 days on a 2.8 GHz CPU for 1.5-pN waveform; $\sim 2.5 \times$ longer for 3.5-pN

Analysis details: BH-NS signal

- Signals injected in simulated noise for H1L1V @ SNR ≈ 17.0
- Fiducial binary: $M_{1,2} = 10 + 1.4 M_\odot$, $d_L = 16–23$ Mpc
- Spin: $a_{\text{spin}} = 0.0, 0.1, 0.5, 0.8$, $\theta_{\text{SL}} = 20^\circ, 55^\circ$
Convergence of chains

- Dots: starting values
- Dashes: injection values
Analysis of a BH-BH signal with spins

van der Sluys et al., in preparation
The nuisance of having spins in your analysis

Signal **without** spins, analysis with spinning template

Signal **with** spins, analysis with spinning template