THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES

C. Belczynski (University of Warsaw, UTB),
M. DOMINIK (University of Warsaw),
T. Bulik (University of Warsaw),
R. O’Shaughnessy (University of Milwaukee),
C. Fryer (LANL), D. Holz (LANL)
METALLICITY FACTORS

• High amount of metals increases opacity which makes the stars more puffy

• Higher opacity also increases radiation driven mass loss

• During expansion stars with higher metallicity experience larger radius changes
$M_{\text{zams}} = 30\, M_\odot$

$Z = Z_\odot$

$Z = 0.1\, Z_\odot$

$R\left[R_\odot \right]$ vs $t\left[\text{Myr} \right]$.

HG
BINARY STAR EVOLUTION

- Supernovae
 - Kick magnitude is dependent on pre-SN core mass – more mass \Rightarrow weaker kicks
 - Strong kicks may disrupt a binary system, preventing future merger

- Common envelope
 - Insufficient orbital energy – merger
 - Sufficient orbital energy – tight system
More likely to disrupt

Less likely to disrupt

Less likely to survive

More likely to survive
ESTIMATE OF THE RATE

- Metallicity: Z_{sun} and $0.1Z_{\text{sun}}$
- Constant star formation rate (3.5 M_{sun}/yr)
- Merger rate for Milky Way
- Extrapolation to local Universe

$\text{SNR} \sim M^{5/6}/D$
<table>
<thead>
<tr>
<th>System</th>
<th>Z_{sun}</th>
<th>$0.1Z_{\text{sun}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-NS</td>
<td>14.4</td>
<td>3.3</td>
</tr>
<tr>
<td>BH-NS</td>
<td>0.01</td>
<td>7.0</td>
</tr>
<tr>
<td>BH-BH</td>
<td>14.4</td>
<td>16.4</td>
</tr>
</tbody>
</table>
DETECTION RATES [yr⁻¹]

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Type</th>
<th>Z_{sun}</th>
<th>$0.1Z_{\text{sun}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Mpc</td>
<td>NS-NS</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>BH-NS</td>
<td>0.00002</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>BH-BH</td>
<td>0.00005</td>
<td>0.1</td>
</tr>
<tr>
<td>300 Mpc</td>
<td>NS-NS</td>
<td>15.1</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>BH-NS</td>
<td>0.1</td>
<td>85.4</td>
</tr>
<tr>
<td></td>
<td>BH-BH</td>
<td>0.21</td>
<td>483.3</td>
</tr>
</tbody>
</table>
SUMMARY

• Lowering metallicity decreases supernova kicks and stellar radii ensuing increased survival rate of BH-BH binaries

• Reduced mass loss rates increase BH remnant masses, which should yield a stronger SNR

• BH-BH binary detection rates are up to 100 times larger than for NS-NS binaries

• Detailed waveform implementation, evolution improvement and cosmology calculations underway